Dissection of Factors Affecting the Variability of the Peptide Bond Geometry and Planarity

نویسندگان

  • Nicole Balasco
  • Luciana Esposito
  • Amarinder Singh Thind
  • Mario Rosario Guarracino
  • Luigi Vitagliano
چکیده

Proteins frequently assume complex three-dimensional structures characterized by marginal thermodynamic stabilities. In this scenario, deciphering the folding code of these molecular giants with clay feet is a cumbersome task. Studies performed in last years have shown that the interplay between backbone geometry and local conformation has an important impact on protein structures. Although the variability of several geometrical parameters of protein backbone has been established, the role of the structural context in determining these effects has been hitherto limited to the valence bond angle τ (NC α C). We here investigated the impact of different factors on the observed variability of backbone geometry and peptide bond planarity. These analyses corroborate the notion that the local conformation expressed in terms of (ϕ, ψ) dihedrals plays a predominant role in dictating the variability of these parameters. The impact of secondary structure is limited to bond angles which involve atoms that are usually engaged in H-bonds and, therefore, more susceptible to the structural context. Present data also show that the nature of the side chain has a significant impact on angles such as NC α C β and C β C α C. In conclusion, our analyses strongly support the use of variability of protein backbone geometry in structure refinement, validation, and prediction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peptide Bond Distortions from Planarity: New Insights from Quantum Mechanical Calculations and Peptide/Protein Crystal Structures

By combining quantum-mechanical analysis and statistical survey of peptide/protein structure databases we here report a thorough investigation of the conformational dependence of the geometry of peptide bond, the basic element of protein structures. Different peptide model systems have been studied by an integrated quantum mechanical approach, employing DFT, MP2 and CCSD(T) calculations, both i...

متن کامل

Interplay between peptide bond geometry and local conformation: molecular dynamics analyses

Several statistical and quantum chemical investigations performed in the last two decades have unveiled a strong correlation between protein backbone geometry (bond angles, dihedral angles and pyramidalization) and the local conformation (Berkholz et al. 2012; Berkholz et al. 2009; Esposito et al. 2005; Esposito et al. 2000; Esposito et al. 2013; Improta et al. 2011; Karplus 1996). This finding...

متن کامل

Effects of Local Interactions on the Structural Features of Dipeptides: A Theoretical Study

Structural features of small amino acid sequences are known to determine the dynamic properties and functional specificity of proteins and polypeptides. In this study, the effects of solvation and identity of the varying C-terminal residue on the energetics, structural features of the peptide planes, values of the ψ and ф dihedrals, geometry around the α-carbon atoms and theoretically predicted...

متن کامل

The effect of intermolecular hydrogen bonding on the planarity of amidesw

Ab initio and density functional theory (DFT) calculations on some model systems are presented to assess the extent to which intermolecular hydrogen bonding can affect the planarity of amide groups. Formamide and urea are examined as archetypes of planar and non-planar amides, respectively. DFT optimisations suggest that appropriately disposed hydrogen-bond donor or acceptor molecules can induc...

متن کامل

The effect of intermolecular hydrogen bonding on the planarity of amides.

Ab initio and density functional theory (DFT) calculations on some model systems are presented to assess the extent to which intermolecular hydrogen bonding can affect the planarity of amide groups. Formamide and urea are examined as archetypes of planar and non-planar amides, respectively. DFT optimisations suggest that appropriately disposed hydrogen-bond donor or acceptor molecules can induc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017